3.516 \(\int \frac{\tan ^4(e+f x)}{\sqrt{a+b \sin ^2(e+f x)}} \, dx\)

Optimal. Leaf size=246 \[ -\frac{2 (2 a+b) \tan (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 f (a+b)^2}+\frac{\tan (e+f x) \sec ^2(e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 f (a+b)}-\frac{a \sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{\frac{b \sin ^2(e+f x)}{a}+1} F\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right )}{3 f (a+b) \sqrt{a+b \sin ^2(e+f x)}}+\frac{2 (2 a+b) \sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right )}{3 f (a+b)^2 \sqrt{\frac{b \sin ^2(e+f x)}{a}+1}} \]

[Out]

(2*(2*a + b)*Sqrt[Cos[e + f*x]^2]*EllipticE[ArcSin[Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[a + b*Sin[e + f*x]
^2])/(3*(a + b)^2*f*Sqrt[1 + (b*Sin[e + f*x]^2)/a]) - (a*Sqrt[Cos[e + f*x]^2]*EllipticF[ArcSin[Sin[e + f*x]],
-(b/a)]*Sec[e + f*x]*Sqrt[1 + (b*Sin[e + f*x]^2)/a])/(3*(a + b)*f*Sqrt[a + b*Sin[e + f*x]^2]) - (2*(2*a + b)*S
qrt[a + b*Sin[e + f*x]^2]*Tan[e + f*x])/(3*(a + b)^2*f) + (Sec[e + f*x]^2*Sqrt[a + b*Sin[e + f*x]^2]*Tan[e + f
*x])/(3*(a + b)*f)

________________________________________________________________________________________

Rubi [A]  time = 0.237528, antiderivative size = 246, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.32, Rules used = {3196, 470, 527, 524, 426, 424, 421, 419} \[ -\frac{2 (2 a+b) \tan (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 f (a+b)^2}+\frac{\tan (e+f x) \sec ^2(e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 f (a+b)}-\frac{a \sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{\frac{b \sin ^2(e+f x)}{a}+1} F\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right )}{3 f (a+b) \sqrt{a+b \sin ^2(e+f x)}}+\frac{2 (2 a+b) \sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right )}{3 f (a+b)^2 \sqrt{\frac{b \sin ^2(e+f x)}{a}+1}} \]

Antiderivative was successfully verified.

[In]

Int[Tan[e + f*x]^4/Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

(2*(2*a + b)*Sqrt[Cos[e + f*x]^2]*EllipticE[ArcSin[Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[a + b*Sin[e + f*x]
^2])/(3*(a + b)^2*f*Sqrt[1 + (b*Sin[e + f*x]^2)/a]) - (a*Sqrt[Cos[e + f*x]^2]*EllipticF[ArcSin[Sin[e + f*x]],
-(b/a)]*Sec[e + f*x]*Sqrt[1 + (b*Sin[e + f*x]^2)/a])/(3*(a + b)*f*Sqrt[a + b*Sin[e + f*x]^2]) - (2*(2*a + b)*S
qrt[a + b*Sin[e + f*x]^2]*Tan[e + f*x])/(3*(a + b)^2*f) + (Sec[e + f*x]^2*Sqrt[a + b*Sin[e + f*x]^2]*Tan[e + f
*x])/(3*(a + b)*f)

Rule 3196

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Dist[(ff^(m + 1)*Sqrt[Cos[e + f*x]^2])/(f*Cos[e + f*x]), Subst[Int[(x^m*(a + b*ff^2*
x^2)^p)/(1 - ff^2*x^2)^((m + 1)/2), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2]
 &&  !IntegerQ[p]

Rule 470

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> -Simp[(a*e^(2
*n - 1)*(e*x)^(m - 2*n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(b*n*(b*c - a*d)*(p + 1)), x] + Dist[e^(2
*n)/(b*n*(b*c - a*d)*(p + 1)), Int[(e*x)^(m - 2*n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[a*c*(m - 2*n + 1) +
(a*d*(m - n + n*q + 1) + b*c*n*(p + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0] &
& IGtQ[n, 0] && LtQ[p, -1] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 527

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> -Simp[
((b*e - a*f)*x*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(a*n*(b*c - a*d)*(p + 1)), x] + Dist[1/(a*n*(b*c - a*d
)*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(b*e - a*f) + e*n*(b*c - a*d)*(p + 1) + d*(b*e - a*f)
*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, q}, x] && LtQ[p, -1]

Rule 524

Int[((e_) + (f_.)*(x_)^(n_))/(Sqrt[(a_) + (b_.)*(x_)^(n_)]*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/
b, Int[Sqrt[a + b*x^n]/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/(Sqrt[a + b*x^n]*Sqrt[c + d*x^n]),
x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&  !(EqQ[n, 2] && ((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && (PosQ[
d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-(b/a), -(d/c)]))))))

Rule 426

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[a + b*x^2]/Sqrt[1 + (b*x^2)/a]
, Int[Sqrt[1 + (b*x^2)/a]/Sqrt[c + d*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ
[a, 0]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 421

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 + (d*x^2)/c]/Sqrt[c + d*
x^2], Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + (d*x^2)/c]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{\tan ^4(e+f x)}{\sqrt{a+b \sin ^2(e+f x)}} \, dx &=\frac{\left (\sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{x^4}{\left (1-x^2\right )^{5/2} \sqrt{a+b x^2}} \, dx,x,\sin (e+f x)\right )}{f}\\ &=\frac{\sec ^2(e+f x) \sqrt{a+b \sin ^2(e+f x)} \tan (e+f x)}{3 (a+b) f}-\frac{\left (\sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{a+(3 a+2 b) x^2}{\left (1-x^2\right )^{3/2} \sqrt{a+b x^2}} \, dx,x,\sin (e+f x)\right )}{3 (a+b) f}\\ &=-\frac{2 (2 a+b) \sqrt{a+b \sin ^2(e+f x)} \tan (e+f x)}{3 (a+b)^2 f}+\frac{\sec ^2(e+f x) \sqrt{a+b \sin ^2(e+f x)} \tan (e+f x)}{3 (a+b) f}-\frac{\left (\sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{-a (3 a+b)-2 b (2 a+b) x^2}{\sqrt{1-x^2} \sqrt{a+b x^2}} \, dx,x,\sin (e+f x)\right )}{3 (a+b)^2 f}\\ &=-\frac{2 (2 a+b) \sqrt{a+b \sin ^2(e+f x)} \tan (e+f x)}{3 (a+b)^2 f}+\frac{\sec ^2(e+f x) \sqrt{a+b \sin ^2(e+f x)} \tan (e+f x)}{3 (a+b) f}-\frac{\left (a \sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{a+b x^2}} \, dx,x,\sin (e+f x)\right )}{3 (a+b) f}+\frac{\left (2 (2 a+b) \sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{\sqrt{a+b x^2}}{\sqrt{1-x^2}} \, dx,x,\sin (e+f x)\right )}{3 (a+b)^2 f}\\ &=-\frac{2 (2 a+b) \sqrt{a+b \sin ^2(e+f x)} \tan (e+f x)}{3 (a+b)^2 f}+\frac{\sec ^2(e+f x) \sqrt{a+b \sin ^2(e+f x)} \tan (e+f x)}{3 (a+b) f}+\frac{\left (2 (2 a+b) \sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{b x^2}{a}}}{\sqrt{1-x^2}} \, dx,x,\sin (e+f x)\right )}{3 (a+b)^2 f \sqrt{1+\frac{b \sin ^2(e+f x)}{a}}}-\frac{\left (a \sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{1+\frac{b \sin ^2(e+f x)}{a}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{b x^2}{a}}} \, dx,x,\sin (e+f x)\right )}{3 (a+b) f \sqrt{a+b \sin ^2(e+f x)}}\\ &=\frac{2 (2 a+b) \sqrt{\cos ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right ) \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 (a+b)^2 f \sqrt{1+\frac{b \sin ^2(e+f x)}{a}}}-\frac{a \sqrt{\cos ^2(e+f x)} F\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right ) \sec (e+f x) \sqrt{1+\frac{b \sin ^2(e+f x)}{a}}}{3 (a+b) f \sqrt{a+b \sin ^2(e+f x)}}-\frac{2 (2 a+b) \sqrt{a+b \sin ^2(e+f x)} \tan (e+f x)}{3 (a+b)^2 f}+\frac{\sec ^2(e+f x) \sqrt{a+b \sin ^2(e+f x)} \tan (e+f x)}{3 (a+b) f}\\ \end{align*}

Mathematica [A]  time = 2.18323, size = 188, normalized size = 0.76 \[ \frac{-\frac{\tan (e+f x) \sec ^2(e+f x) \left (2 \left (4 a^2+3 a b+b^2\right ) \cos (2 (e+f x))+(2 a+b) (2 a-b \cos (4 (e+f x))-b)\right )}{\sqrt{2}}-2 a (a+b) \sqrt{\frac{2 a-b \cos (2 (e+f x))+b}{a}} F\left (e+f x\left |-\frac{b}{a}\right .\right )+4 a (2 a+b) \sqrt{\frac{2 a-b \cos (2 (e+f x))+b}{a}} E\left (e+f x\left |-\frac{b}{a}\right .\right )}{6 f (a+b)^2 \sqrt{2 a-b \cos (2 (e+f x))+b}} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[e + f*x]^4/Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

(4*a*(2*a + b)*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticE[e + f*x, -(b/a)] - 2*a*(a + b)*Sqrt[(2*a + b -
 b*Cos[2*(e + f*x)])/a]*EllipticF[e + f*x, -(b/a)] - ((2*(4*a^2 + 3*a*b + b^2)*Cos[2*(e + f*x)] + (2*a + b)*(2
*a - b - b*Cos[4*(e + f*x)]))*Sec[e + f*x]^2*Tan[e + f*x])/Sqrt[2])/(6*(a + b)^2*f*Sqrt[2*a + b - b*Cos[2*(e +
 f*x)]])

________________________________________________________________________________________

Maple [A]  time = 2.59, size = 377, normalized size = 1.5 \begin{align*} -{\frac{1}{ \left ( -3+3\,\sin \left ( fx+e \right ) \right ) \left ( 1+\sin \left ( fx+e \right ) \right ) \left ( a+b \right ) ^{2}\cos \left ( fx+e \right ) f} \left ( 2\,\sqrt{-b \left ( \cos \left ( fx+e \right ) \right ) ^{4}+ \left ( a+b \right ) \left ( \cos \left ( fx+e \right ) \right ) ^{2}}b \left ( 2\,a+b \right ) \sin \left ( fx+e \right ) \left ( \cos \left ( fx+e \right ) \right ) ^{4}-\sqrt{-b \left ( \cos \left ( fx+e \right ) \right ) ^{4}+ \left ( a+b \right ) \left ( \cos \left ( fx+e \right ) \right ) ^{2}} \left ( 4\,{a}^{2}+7\,ab+3\,{b}^{2} \right ) \left ( \cos \left ( fx+e \right ) \right ) ^{2}\sin \left ( fx+e \right ) +\sqrt{-b \left ( \cos \left ( fx+e \right ) \right ) ^{4}+ \left ( a+b \right ) \left ( \cos \left ( fx+e \right ) \right ) ^{2}} \left ({a}^{2}+2\,ab+{b}^{2} \right ) \sin \left ( fx+e \right ) -\sqrt{-b \left ( \cos \left ( fx+e \right ) \right ) ^{4}+ \left ( a+b \right ) \left ( \cos \left ( fx+e \right ) \right ) ^{2}}\sqrt{ \left ( \cos \left ( fx+e \right ) \right ) ^{2}}\sqrt{-{\frac{b \left ( \cos \left ( fx+e \right ) \right ) ^{2}}{a}}+{\frac{a+b}{a}}}a \left ({\it EllipticF} \left ( \sin \left ( fx+e \right ) ,\sqrt{-{\frac{b}{a}}} \right ) a+{\it EllipticF} \left ( \sin \left ( fx+e \right ) ,\sqrt{-{\frac{b}{a}}} \right ) b-4\,{\it EllipticE} \left ( \sin \left ( fx+e \right ) ,\sqrt{-{\frac{b}{a}}} \right ) a-2\,{\it EllipticE} \left ( \sin \left ( fx+e \right ) ,\sqrt{-{\frac{b}{a}}} \right ) b \right ) \left ( \cos \left ( fx+e \right ) \right ) ^{2} \right ){\frac{1}{\sqrt{- \left ( a+b \left ( \sin \left ( fx+e \right ) \right ) ^{2} \right ) \left ( -1+\sin \left ( fx+e \right ) \right ) \left ( 1+\sin \left ( fx+e \right ) \right ) }}}{\frac{1}{\sqrt{a+b \left ( \sin \left ( fx+e \right ) \right ) ^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(f*x+e)^4/(a+b*sin(f*x+e)^2)^(1/2),x)

[Out]

-1/3*(2*(-b*cos(f*x+e)^4+(a+b)*cos(f*x+e)^2)^(1/2)*b*(2*a+b)*sin(f*x+e)*cos(f*x+e)^4-(-b*cos(f*x+e)^4+(a+b)*co
s(f*x+e)^2)^(1/2)*(4*a^2+7*a*b+3*b^2)*cos(f*x+e)^2*sin(f*x+e)+(-b*cos(f*x+e)^4+(a+b)*cos(f*x+e)^2)^(1/2)*(a^2+
2*a*b+b^2)*sin(f*x+e)-(-b*cos(f*x+e)^4+(a+b)*cos(f*x+e)^2)^(1/2)*(cos(f*x+e)^2)^(1/2)*(-b/a*cos(f*x+e)^2+(a+b)
/a)^(1/2)*a*(EllipticF(sin(f*x+e),(-1/a*b)^(1/2))*a+EllipticF(sin(f*x+e),(-1/a*b)^(1/2))*b-4*EllipticE(sin(f*x
+e),(-1/a*b)^(1/2))*a-2*EllipticE(sin(f*x+e),(-1/a*b)^(1/2))*b)*cos(f*x+e)^2)/(-1+sin(f*x+e))/(1+sin(f*x+e))/(
a+b)^2/(-(a+b*sin(f*x+e)^2)*(-1+sin(f*x+e))*(1+sin(f*x+e)))^(1/2)/cos(f*x+e)/(a+b*sin(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^4/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{-b \cos \left (f x + e\right )^{2} + a + b} \tan \left (f x + e\right )^{4}}{b \cos \left (f x + e\right )^{2} - a - b}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^4/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-b*cos(f*x + e)^2 + a + b)*tan(f*x + e)^4/(b*cos(f*x + e)^2 - a - b), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan ^{4}{\left (e + f x \right )}}{\sqrt{a + b \sin ^{2}{\left (e + f x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)**4/(a+b*sin(f*x+e)**2)**(1/2),x)

[Out]

Integral(tan(e + f*x)**4/sqrt(a + b*sin(e + f*x)**2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan \left (f x + e\right )^{4}}{\sqrt{b \sin \left (f x + e\right )^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^4/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(tan(f*x + e)^4/sqrt(b*sin(f*x + e)^2 + a), x)